Algorithms for Solving Common Fixed Point Problems
یادگیری و پیشرفت
:::::::::::::::: ::::::::::::::::
دیجیتال مارکتینگ
:::::::::::::::: ::::::::::::::::
رشد کسب‌وکار
:::::::::::::::: ::::::::::::::::
صنعت آموزش


عضو شوید


نام کاربری
رمز عبور

:: فراموشی رمز عبور؟

عضویت سریع

نام کاربری
رمز عبور
تکرار رمز
ایمیل
کد تصویری
براي اطلاع از آپيدت شدن وبلاگ در خبرنامه وبلاگ عضو شويد تا جديدترين مطالب به ايميل شما ارسال شود



تاریخ : سه شنبه 7 اسفند 1397
بازدید : 577
نویسنده : کیا فایل

Algorithms for Solving Common Fixed Point Problems

Algorithms for Solving Common Fixed Point Problems

 

Title: Algorithms for Solving Common Fixed Point Problems | Author(s): Alexander J. Zaslavski Publisher: Springer Year: 2018 Edition: 1st Language: English Pages : 320 |ISBN: 3319774360, 9783319774367 Size: 3 MB Extension: pdf

 

This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning.


Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces. 

 



 





:: موضوعات مرتبط: ریاضی , ,
:: برچسب‌ها: fixed point problems , algorithm , algorithm for solving problems ,
می توانید دیدگاه خود را بنویسید


نام
آدرس ایمیل
وب سایت/بلاگ
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

آپلود عکس دلخواه:








فروشگاه فایل کیا؛ منبع جامع انواع فایل... چنانچه فایل مد نظرشما در بین فایل های بارگذاری شده در سایت موجود نبود،می توانید از طریق دایرکت پیج اینستاگرام@kiyafile.ir سفارش دهید.

نام :
وب :
پیام :
2+2=:
(Refresh)

تبادل لینک هوشمند

برای تبادل لینک ابتدا ما را با عنوان منبع جامع انواع فایل و آدرس kiyafile.ir لینک نمایید سپس مشخصات لینک خود را در زیر نوشته . در صورت وجود لینک ما در سایت شما لینکتان به طور خودکار در سایت ما قرار میگیرد.











RSS

Powered By
loxblog.Com
مدیر سبز، آموزش بازاریابی

TOOLS BLOG

TOOLS BLOG